30 research outputs found

    PKind: A parallel k-induction based model checker

    Full text link
    PKind is a novel parallel k-induction-based model checker of invariant properties for finite- or infinite-state Lustre programs. Its architecture, which is strictly message-based, is designed to minimize synchronization delays and easily accommodate the incorporation of incremental invariant generators to enhance basic k-induction. We describe PKind's functionality and main features, and present experimental evidence that PKind significantly speeds up the verification of safety properties and, due to incremental invariant generation, also considerably increases the number of provable ones.Comment: In Proceedings PDMC 2011, arXiv:1111.006

    Synthesizing Modular Invariants for Synchronous Code

    Full text link
    In this paper, we explore different techniques to synthesize modular invariants for synchronous code encoded as Horn clauses. Modular invariants are a set of formulas that characterizes the validity of predicates. They are very useful for different aspects of analysis, synthesis, testing and program transformation. We describe two techniques to generate modular invariants for code written in the synchronous dataflow language Lustre. The first technique directly encodes the synchronous code in a modular fashion. While in the second technique, we synthesize modular invariants starting from a monolithic invariant. Both techniques, take advantage of analysis techniques based on property-directed reachability. We also describe a technique to minimize the synthesized invariants.Comment: In Proceedings HCVS 2014, arXiv:1412.082

    The SeaHorn Verification Framework

    Get PDF
    In this paper, we present SeaHorn, a software verification framework. The key distinguishing feature of SeaHorn is its modular design that separates the concerns of the syntax of the programming language, its operational semantics, and the verification semantics. SeaHorn encompasses several novelties: it (a) encodes verification conditions using an efficient yet precise inter-procedural technique, (b) provides flexibility in the verification semantics to allow different levels of precision, (c) leverages the state-of-the-art in software model checking and abstract interpretation for verification, and (d) uses Horn-clauses as an intermediate language to represent verification conditions which simplifies interfacing with multiple verification tools based on Horn-clauses. SeaHorn provides users with a powerful verification tool and researchers with an extensible and customizable framework for experimenting with new software verification techniques. The effectiveness and scalability of SeaHorn are demonstrated by an extensive experimental evaluation using benchmarks from SV-COMP 2015 and real avionics code

    On the whereabouts of CSP-CASL – A survey

    Get PDF
    CSP-CASL is but one of the many languages for which Bernd Krieg-Brueckner (BKB) had a great deal of influence throughout its development process: from the initial idea of working towards an integration of the process algebra CSP with the algebraic specification language CASL, to the design of the concrete syntax, and also to tool support for CSP-CASL, where the theorem prover Isabelle should provide the common platform. In all this, BKB provided inspiration and guidance, funding, and also a helping hand when needed. This paper provides a survey on the technology developed so far for CSP-CASL, covering results of a theoretical nature, an industrial case study, theorem proving support as well as a testing approach. In honour of BKB’s 60th birthday, this survey documents what has become out of one of BKB’s visions

    Reachability analysis for AWS-based networks

    Get PDF
    Cloud services provide the ability to provision virtual networked infrastructure on demand over the Internet. The rapid growth of these virtually provisioned cloud networks has increased the demand for automated reasoning tools capable of identifying misconfigurations or security vulnerabilities. This type of automation gives customers the assurance they need to deploy sensitive workloads. It can also reduce the cost and time-to-market for regulated customers looking to establish compliance certification for cloud-based applications. In this industrial case-study, we describe a new network reachability reasoning tool, called Tiros, that uses off-the-shelf automated theorem proving tools to fill this need. Tiros is the foundation of a recently introduced network security analysis feature in the Amazon Inspector service now available to millions of customers building applications in the cloud. Tiros is also used within Amazon Web Services (AWS) to automate the checking of compliance certification and adherence to security invariants for many AWS services that build on existing AWS networking features

    Selected Extended Papers of NFM 2017: Preface

    No full text
    corecore